正因為全球對於汽車網路安全的重視,目前Security & OTA工作小組除了以上述規範作為依歸之外,研究重點還包括三大項目:從源頭的供應商管理、車輛安全解決方案、再到將用戶數據資料的保護,藉此實現車輛高度安全的遠景。建立與研究車輛安全框架(Security Frameworks),從多面向來看車輛安全。首先,在源頭管理部分,工作小組從三個部分著手,一是推行BSIMM(Building Security in Maturity Model)做供應商資訊安全成熟度管理,BSIMM是一項國際權威的軟體安全評估標準體系,旨在通過量化數據,測量和評估企業的安全性活動,了解一家公司對於安全控管的成熟度如何,例如當該公司員工的電腦被入侵,是否會進而影響到開發的產品,藉此驗證供應商的安全管理能力。二是建立供應商的SBOM(Software Bill of Materials)系統, 管理軟體組成元件,舉例來說,有些軟體並非由供應商獨力開發,而是使用開放原始碼(Open Source),當某些程式庫出現安全疑慮或漏洞時,就能透過查看供應商的SBOM來檢視其軟體,若身陷風險中就必須盡快修補與更新程式,這就是從軟體做源頭管理。三是建立符合安全法規的開發流程,在設計時做好威脅分析和風險評估(TARA Threat Analysis and Risk Assessment),在產品驗證時要做原始碼及產品的漏洞檢測(Vulnerability Check)及滲透測試(Penetration Test)等,在設計開發驗證階段就將產品的安全漏洞與安全弱點降到最低。
從元件到雲端,監測異常封包
上述策略是要求供應商自身的安全能力必須先具備一定的成熟度,車輛開發商也必須注意產品開發設計時要避免產生網路安全上的漏洞與弱點。而汽車本身的安全則透過各種解決方案來實現,特別是電動車如同一個小型的移動數據中心,電動車的Cyber Security必須導入適合的資安技術,目前MIH工作小組跟夥伴們合作研究車用入侵偵測與預防系統(Intrusion Detection and Prevention Systems,IDPS),在車輛元件中間做控管與異常監控,分析不正常的數據封包。除此之外,配合雲端的車輛安全運營中心(Vehicle Security Operation Center,VSOC)及OTA等技術,假設汽車遇到被駭客入侵,該問題無法在汽車端被解決,系統就會告知雲端VSOC,再透過OTA更新程式,將問題解決,實現對車輛端對端的安全監控。